Inventory Preparation for Modeling

Madeleine Strum and Joe Touma EPA/OAQPS/EMAD

Region 5 Air Toxics Risk Assessment Modeling Tools Symposium July 15, 2003

Objectives of Presentation

Provide general overview of preparing inventory for AQ modeling

Try to be Model Neutral -- Grid Models and Gaussian Models And Pollutant Neutral -- Toxics and Criteria Pollutants

 Present specific checks needed when conducting local scale analyses

Specifics geared towards -- Gaussian Models used for air toxics risk assessments

Challenges in Preparing an Inventory For Modeling

- Different air quality models have different emission needs
- Inventory information doesn't match those needs
- Inventory information evolves -- emission processors must keep up with the changes
- Terminology can be different from inventory to processor to air quality model

Inventory preparers should understand the inventory and its development and the AQ model

Air Quality Models Want ...

- Hourly time resolution
- Geographically resolved emissions (gridded or specific dimensions)
- Pollutant species ("model species") to meet needs of AQ model chemical/physical algorithms
- *Risk assessors want pollutant species to match health effects data
- All sources represented
 - Anthropogenic, Biogenic (grid models)
- Domain wide coverage

Developing of Emissions Inventories for Modeling Requires

- Quality Assurance/Quality Control
- Temporal Allocation
- Spatial Allocation
- Pollutant Speciation
- Emission Projections

The Big Picture

Example Modeling Domain

Point Sources

- Inventory Perspective: Emissions occur at a facility – at a known location
- AQ Model Perspective: Point sources are vertical stacks
- Key inventory elements
 - Facility/Process/Stack-Level emissions, by pollutant
 - Geographic coordinates
 - Emission release point parameters
 - Operating schedule
 - Control Information (for projections)

Non-Point or Stationary Area Sources

- Inventory-perspective: county-level emissions
- AQ model perspective: non-stack
- Key inventory elements
 - Category-Level Emissions (process/industrial category), by pollutant
 - State/county
 - Operating Schedule
 - Control information (projections)
- Non-point and Nonroad emissions treated similarly by emission processor and AQ model

Steps to Prepare Inventory for Emissions Processor

National Emission Inventory (NEI) is starting point

- Develop "modeling files" containing the necessary variables for processing and QA
- Subset to modeling domain
- For all inventory categories: check inventory codes (SCC, SIC, MACT), pollutants, FIPs codes, and make sure all necessary cross references are available for emission processor ancillary files

Steps to Prepare Inventory for Emissions Processor, continued

- Analyze point sources: locations, stack parameters
- Analyze non-point, nonroad sources: categories with distinct locations
- Analyze pollutant species, top emitters
- Gather additional source-specific information to improve upon locations, stack parameters, specificity of pollutant species
- Check to see if operating information / other inventory periodicity information can provide source-specific temporal profiles

Point Source Inventory Analysis

- Geographic coordinates
 - Check if any were defaulted find actual values
 - Check that coordinates are consistent with county and that multiple release points within same facility are nearby
 - Analyze highest emitters (for each pollutant)
- Stack parameters
 - Check if any were defaulted find actual values
 - Check similar parameters for similar SCC/SIC
 - Analyze highest emitters (for each pollutant)
- Add modeling information likely not in inventory
 - Building parameters
 - Fugitive release parameters
 - Dimensions for sources with known locations

Non-Point Source/Nonroad Inventory Analysis

- Look at source categories to determine if they can be allocated to actual locations, e.g., landfills
- Find locations, area source dimensions, release parameters - placing emissions in the proper location will always improve the modeled estimate
- Develop surrogates for those categories than cannot be allocated to actual locations

Conclusions

- Inventories used for modeling are more than just emissions – AQ models need more detailed inputs
- Take steps to insure the inventory can support temporal, spatial and speciation needs as required by the analysis
- Inventory preparers work with modelers to understand what they need and ensure they know the limitations of the inventory

- Junk In = Junk Out" results only as good as inputs
 - Recommend that additional and redundant
 QA/QC be performed on the inventory
- <u>www.epa.gov/ttn/chief/emch</u> is a resource